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Figure 1. This plot demonstrates all triple instantaneous mutations analyzed from the SELECTOME/Euteleostomi (dataset n=13,303).
           The results below are filtered (>200), to show the most common codon to codon exchanges (n=24,653)
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Contemporary codon models of molecular sequence evolution often 

assume changes within a specific codon happen stepwise as a single, 

instantaneous nucleotide substitution. However, these models may fail to 

accurately depict evolutionary pressures and constraints at individual sites 

along a protein-coding sequence or across branches. Our novel statistical 

method modifies the MG94 (1) codon model to allow double and triple 

instantaneous substitutions within a codon in addition to the conventional 

single nucleotide replacement. We apply our new codon model to simulated 

and empirical data sets to compare the results of Single, Double, and Triple 

nucleotide substitution inclusive models (SH, DH, TH). Our goal is to 

determine the feasibility of modeling multiple simultaneous hits (MSH) 

within codons and if our ability to detect a signal is contingent upon realistic 

biological phenomenon or statistical noise. 

Abstract Results

Our analyses on the SELECTOME (3) indicate a statistically significant contribution to 

signal by Serine codon island jumping, in part due to the degeneracy of the genetic 

code. When serine to serine shifts are disallowed we saw a decrease in the TH rate for 

88% (data not shown) of the datasets where TH was prefered (over DH (p < 0.05)). 

Future work aims to further contextualize the biological contributors (6, 7) of MSH in 

adaptive evolutionary datasets. Especially in species where we are more likely to find 

expression of error prone polymerases (2). A better understanding of MSH pressures 

(8, 9) may also delineate false positive inferences of selection acting upon genes (4). A 

current implementation of this method is available for HyPhy version (≥2.4) at: 

https://github.com/veg/hyphy-analyses/tree/master/FitMultiModel

ConclusionsTH 
(TH + DH + SH inclusive)

DH 
(DH + SH inclusive)

SH 
(SH only)

Model fit, p<0.05 (vs DH) 37.1% (vs SH) 94.1% (vs TH) 7%

Model fit, p<0.005 (vs DH) 20.7% (vs SH) 89.6% (vs TH) 9.3%

Average AICc 22528.1 22530.9 22691.8

Average log(L) -11184.7 -11187.1 -11268.6

Average Omega 0.2424 0.2342 0.2443

Average TH rate 0.33 - -

Table 1. Comparison of summary statistics and parameters across our models.
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Figure 3. GO analysis for gene alignments where the TH model is preferred over   
the DH (p < 0.05). TH’s may be a feature of specific protein classes which 
warrants further investigation.
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Figure 2. Comparison of omega values across rate categories (n=3), which are 
used to determine the type and scale of selection at individual sites.

We define our Q matrix as follows:

⍵ = dN/dS = 𝛃/ɑ, the rate of nonsynonymous to synonymous substitutions
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