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Results
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We define our Q matrix as follows: a0.x Synonymous single nucleotide change (TH + DH + SH inclusive) (DH + SH inclusive) (SH only)
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o = dN/dS = 8/q, the rate of nonsynonymous to synonymous substititions

", = double instantaneous mutation rate 0 | | Model fit, p<0.05 (vs DH) 37.1% (vs SH) 94.1% (vs TH) 7% Our analyses on the SELECTOME (3) indicate a statistically significant contribution to
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¥ = triple instantaneous mutation rate signal by Serine codon island jumping, in part due to the degeneracy of the genetic

@ij=underlying nucleotide substitution rate (follows GTR form) MOdel f].t, p<0.005 (VS DH) 20.7% (VS SH) 89.6% (VS TH) 9.3%

code. When serine to serine shifts are disallowed we saw a decrease in the TH rate for

7= nucleotide frequency of target nucleotide
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Synonymous double nucleotide change

Average AICc 20528 1 205309 20691 .8 88% (data not shown) of the datasets where TH was prefered (over DH (p < 0.05)).
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